📢 股票资产上链,全球首发尽在 Gate!
Gate 携手 @xStocksFi 与 @BackedFi,正式上线全球首个股票衍生品市场,开启链上股票交易新纪元!
支持$TSLA, $NVDA, $CRCL, $AAPL 等热门股票:
💥 可加杠杆、做多做空
💰 全USDT计价,轻松管理风险收益
🔒 实物资产 100% 抵押
🔁 多链流转自由无阻
🌐 RWA × Web3,全新交互方式
CeFi 与 TradFi 的边界,已经彻底打破。
了解详情:https://www.gate.com/announcements/article/45926
#xStocksOnGate#
Web3-AI全景解读:技术融合、应用场景与顶级项目深度剖析
Web3-AI 赛道全景报告:技术逻辑、场景应用与顶级项目深度剖析
随着 AI 叙事的持续升温,越来越多的关注集中在这一赛道。本文对 Web3-AI 赛道的技术逻辑、应用场景及代表项目进行了深入剖析,为您全面呈现该领域的全景与发展趋势。
一、Web3-AI:技术逻辑与新兴市场机会解析
1.1 Web3 与 AI 的融合逻辑:如何界定 Web-AI 赛道
在过去的一年中,AI 叙事在 Web3 行业中异常火爆,AI 项目如雨后春笋般涌现。虽然有许多项目涉及 AI 技术,但一些项目仅在其产品的某些部分使用 AI,底层的代币经济学与 AI 产品并无实质关联,因此这类项目在本文中不属于 Web3-AI 项目的讨论之列。
本文的重点在于使用区块链解决生产关系问题,AI 解决生产力问题的项目,这些项目本身提供 AI 产品,同时基于 Web3 经济模型作为生产关系工具,二者相辅相成。我们将这类项目归类为 Web3-AI 赛道。为了使读者更好的理解 Web3-AI 赛道,本文将展开介绍 AI 的开发过程和挑战,以及 Web3 和 AI 结合如何完美解决问题和创造新的应用场景。
1.2 AI 的开发过程和挑战:从数据收集到模型推理
AI 技术是一项让计算机模拟、扩展和增强人类智能的技术。它能够使计算机能够执行各种复杂的任务,从语言翻译,图像分类再到人脸识别、自动驾驶等应用场景,AI 正在改变我们生活和工作的方式。
开发人工智能模型的过程通常包含以下几个关键步骤:数据收集和数据预处理、模型选择和调优、模型训练和推理。举一个简单的例子,开发一个模型来实现对猫和狗图像的分类,你需要:
数据收集和数据预处理:收集包含猫和狗的图像数据集,可以使用公开数据集或自己收集真实数据。然后为每张图像标注类别(猫或狗),确保标签准确无误。将图像转化为模型可以识别的格式,将数据集划分为训练集、验证集和测试集。
模型选择和调优:选择合适的模型,例如卷积神经网络(CNN),比较适合图像分类任务。根据不同需求对模型参数或架构调优,通常来说,模型的网络层次可以根据 AI 任务的复杂度来调整。在这个简单的分类例子中,较浅的网络层次可能就足够。
模型训练:可以使用 GPU、TPU 或高性能计算集群来训练模型,训练时间受模型复杂度和计算能力的影响。
模型推理:模型训练好的文件通常称为模型权重,推理过程是指使用已经训练好的模型对新数据进行预测或分类的过程。这个过程中可以使用测试集或新数据来测试模型的分类效果,通常用准确率、召回率、F1-score 等指标来评估模型的有效性。
如图所示,经过数据收集和数据预处理、模型选择和调优以及训练,将训练好的模型在测试集上进行推理会得出猫和狗的预测值 P(probability),即模型推理出是猫或狗的概率。
训练好的 AI 模型可以进一步地集成到各种应用程序中,执行不同任务。在这个例子里,猫狗分类的 AI 模型可以集成到一个手机应用中,用户上传猫或狗的图片,就可以获得分类结果。
然而,中心化的 AI 开发过程在以下场景中存在一些问题:
用户隐私:在中心化的场景里,AI 的开发过程通常是不透明的。用户数据可能会在不知情的情况下被窃取并用于 AI 训练。
数据源获取:小型团队或个人在获取特定领域数据(如医学数据)时,可能会面临数据不开源的限制。
模型选择和调优:对于小型团队来说,很难获取特定领域的模型资源或花费大量成本进行模型调优。
算力获取:对个人开发者和小型团队而言,高昂的 GPU 购买成本和云算力租赁费用可能构成显著的经济负担。
AI 资产收入:数据标注工作者常常无法获得与其付出相匹配的收入,而 AI 开发者的研究成果也难以与有需求的买家匹配。
中心化 AI 场景下存在的挑战可以通过和 Web3 结合,Web3 作为一种新型生产关系,天然适配代表新型生产力的 AI,从而推动技术和生产能力的同时进步。
1.3 Web3 与 AI 的协同效应:角色转变与创新应用
Web3 与 AI 结合可以增强用户主权,为用户提供开放的 AI 协作平台,使用户从 Web2 时代的 AI 使用者转变为参与者,创建人人可拥有的 AI。同时,Web3 世界与 AI 技术的融合还能碰撞出更多创新的应用场景和玩法。
基于 Web3 技术,AI 的开发和应用将迎来一个崭新的协作经济体系。人们的数据隐私可以得到保障,数据众包模式促进 AI 模型的进步,众多开源的 AI 资源可供用户使用,共享的算力可以以较低的成本获取。借助去中心化的协作众包机制和开放的 AI 市场,可以实现公平的收入分配体系,从而激励更多人来推动 AI 技术的进步。
在 Web3 场景中,AI 能够在多个赛道上产生积极影响。例如,AI 模型可以集成到智能合约中,在不同的应用场景下提升工作效率,如市场分析、安全检测、社交聚类等多种功能。生成式 AI 不仅可以让用户体验"艺术家"角色,比如使用 AI 技术创建自己的 NFT,还可以在 GameFi 中创造丰富多样的游戏场景和有趣的交互体验。丰富的基础设施提供流畅的开发体验,不论是 AI 专家还是想要进入 AI 领域的新手都可以在这个世界里找到合适的入口。
二、Web3-AI 生态项目版图及架构解读
我们主要研究了 Web3-AI 赛道的 41 个项目,并将这些项目划分为不同的层级。每一层的划分逻辑如下图所示,包括基础设施层、中间层和应用层,每一层又分为不同的板块。在下一章节中,我们将对一些具有代表性的项目进行深度解析。
基础设施层涵盖了支持整个 AI 生命周期运行的计算资源和技术架构,中间层则包括了连接基础设施与应用的数据管理、模型开发和验证推理服务,应用层则聚焦于直接面向用户的各类应用和解决方案。
基础设施层:
基础设施层是 AI 生命周期的基础,本文将算力,AI Chain 和开发平台归类为基础设施层。正是这些基础设施的支持,才能实现 AI 模型的训练与推理,并将功能强大、实用的 AI 应用程序呈现给用户。
去中心化计算网络:可以为 AI 模型训练提供分布式算力,确保高效且经济的计算资源利用。一些项目提供了去中心化的算力市场,用户可以以低成本租赁算力或共享算力获得收益,代表项目如 IO.NET 和 Hyperbolic 。此外,一些项目衍生出了新玩法,如 Compute Labs ,提出了代币化协议,用户通过购买代表 GPU 实体的 NFT,可以以不同方式参与算力租赁以获取收益。
AI Chain:利用区块链作为 AI 生命周期的基础,实现链上链下 AI 资源的无缝交互,促进行业生态圈的发展。链上的去中心化 AI 市场可以交易 AI 资产如数据、模型、代理等,并提供 AI 开发框架和配套的开发工具,代表项目如 Sahara AI。AI Chain 还可以促进不同领域的 AI 技术进步,如 Bittensor 通过创新的子网激励机制来促进不同 AI 类型的子网竞争。
开发平台:一些项目提供 AI 代理开发平台,还可以实现 AI 代理的交易,如 Fetch.ai 和 ChainML 等。一站式的工具帮助开发者更便捷地创建、训练和部署 AI 模型,代表项目如 Nimble。这些基础设施促进了 AI 技术在 Web3 生态系统中的广泛应用。
中间层:
这一层涉及 AI 数据、模型以及推理和验证,采用 Web3 技术可以实现更高的工作效率。
此外,一些平台允许领域专家或普通用户执行数据预处理任务,如图像标注、数据分类,这些任务可能需要专业知识的金融和法律任务的数据处理,用户可以将技能代币化,实现数据预处理的协作众包。代表如 Sahara AI 的 AI 市场,具有不同领域的数据任务,可以覆盖多领域的数据场景;而 AIT Protocolt 通过人机协同的方式对数据进行标注。
一些项目支持用户提供不同类型的模型或通过众包方式协作训练模型,如 Sentient 通过模块化的设计,允许用户将可信的模型数据放在存储层,分发层来进行模型优化,Sahara AI 提供的开发工具内置先进的 AI 算法和计算框架,且具有协作训练的能力。
应用层:
这一层主要是直接面向用户的应用程序,将 AI 与 Web3 结合,创造出更多有趣的、创新的玩法,本文主要梳理了 AIGC(AI 生成内容)、AI 代理和数据分析这几个板块的项目。